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ABSTRACT: In this paper we have applied Optimal Homotopy Asymptotic Method (OHAM) to two  

models of Boundary Value Problems (BVPs). The results obtained by OHAM are compared with the exact 

solution. The obtained solutions show that OHAM is effective, simpler easier and explicit. 
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1. INTRODUCTION 

In engineering and applied sciences most of the problems are 

nonlinear in nature. Some of the analytic methods are given 

in the literature. The researchers then searched new methods 

like Adomian Decomposition Method (ADM) [1], 

Variational Iterative Method (VIM) [2] , Differential 

Transform Method (DTM) [3], Group Analysis Method [4], 

Homotopy Perturbation Method (HPM) [5], Radial Basis 

Function [6], and These methods are treated for weakly 

nonlinear problems and limited for strongly nonlinear 

problems. The perturbation methods were introduced for 

strongly nonlinear BVPs [7-9]. A small parameter is 

involved in these methods and is difficult to find. For this 

purpose Artificial Parameters Method [10], Homotopy 

Analysis Method (HAM) [11] and Homotopy Perturbation 

Method (HPM) [5] have been introduced. These methods 

combined the homotopy with the perturbation techniques. 

Recently, Vasile Marinca et al introduced OHAM for 

nonlinear BVPs. This method does not require small 

parameter to be assumed [12-16]. 

The applicability of these methods is studied in [17-24]. The 

motivation of this paper is to apply OHAM for the solution 

of nonlinear BVPs arising in heat transfer.  

In section 2, the basic idea of OHAM is formulated [12-16]. 

In Section 3, the effectiveness of the OHAM formulation for 

BVPs arising in heat transfer has been studied. Three special 

cases of nonlinear boundary value problems have been 

analyzed [25-26]. 

2. Fundamental  Mathematical Structure of OHAM  

We consider a general nonlinear problem:  
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whereL is the linear operator,  z unknown function, 

 k z  known function,   zN  nonlinear operator and 

B  a boundary operator.  
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where  0,1s  is embedding parameter, 

 ,z s unknown function,   0F s   auxiliary function.  

Also 
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From Eq. (2.1) and (2.2) we have  
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Choosing  

  2 3

1 2 3 ...F s sB s B s B                                   (2.8) 

Where 1 2 3, , ,...B B B are optimal constants to determine. 

Expanding   , , iz s B  by Taylor’s series in the form, 
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Substituting Eq. (2.9) into Eq. (2.1) and Eq. (2.2) and 

equating the coefficient of same powers of s , we get 
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In Eq. (2.12)   0 1( ), ( ),..., ( )k i k iz z z   N is the 

coefficient of 
k is 

in the expansion.  
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It is to be noted that ku , 0k   gives a linear BVP  which 

can be easily solved. 

The convergence of the series (2.9) depends upon the 

auxiliary constants 1 2,, ...B B . For 1s   
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Putting Eq. (2.14) into Eq. (2.1), we obatin  

 , ( ( , )) ( ) ( ( , ))i i iR z B z B k z z B    L N .  (2.15)  

If  , 0iR z B  then  , iz B  gives the exact solution of 

the problem which does not happen in case of nonlinear 

problems.  

For the computation of iC , different methods like 

Galerkin’s Method, Ritz Method, Least Squares Method and 

Collocation Method are used.  By the Method of Least 

Squares       2 ,

b

i i

a
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where a and b are two constants. 

The auxiliary constants , 1,2,...,iB i m can be found by   
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The m th order approximate solution is obtained by these 

constants. The constants iB can also be found  

     1 2 1,2, , ... , 0, ,..., .i i m iR k B R k B R k B i m    
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The auxiliary function  H p  is useful for convergence 

and error minimization. 

3. Application of OHAM to heat transfer problems 

The application of OHAM is studied in the following 

models. 

    Model 1 [25] 

    Consider a lumped system BVP of the form 
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its solution is  
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From Eqs.  (3.1.3), (3.1.5), and (3.1.7), we obtain 

       1 2 0 1 1 2 1 2, , , , ,z B B z B z B B      .    (3.1.8) 
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Using Eq. (3.1.9) in (3.1.1) and applying the method of least 

square, we obtain 

1 0.643273967384 2 31 3C     and   

2 0.313157661366= 1234C . 

Substituting these values in Eq. (3.1.9) for 1 21   , we 

obtain 
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Fig. 1. Comparison of HPM, HAM and OHAM of Eq. 

(3.2.3) for 
1 21   . 

Model 2 [25] 

By assuming 1 20,     in Eq. (3.1.1), we obtain    

 

4 0,

0 1.

d

dz


 



  



                                       (3.2.1) 

Zeroth Order Problem:  00 0,        0 0 1  , 

 (3.2.2) 

its solution is  
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From Eqs.  (3.2.3), (3.2.5), and (3.2.7), we obtain: 

     1 2 0 1 1 2 1 2, , , , ,z B B z B z B B      . (3.2.8) 

Using Eq. (3.2.8) in (3.2.1) and applying the technique as 

discussed in Eqs. (2.15)- (2.17), we obtain 

1 0.61050520326 72 14C      and   

2 0.01750500573789 8= 2 01C  . 

Substituting these values in Eq. (3.2.8), we have 

     3= 1 0.149257492 0.0e e25881176z zz   

4 7e e0.278803961 0.155463297z z    .       (3.2.9) 

4.  RESULTS AND DISCUSSIONS 
In section 2, OHAM formulation is given and applied to two 

models of BVPs. For most of the computation, we have used 

Mathematica 7. Fig. 1 shows that OHAM and HAM 

solutions are similar and Fig. 2 shows that OHAM is same to 

NHPM solutions for various values of   and Fig.3 shows 

that OHAM and HPM solutions are nearly alike [25]. 
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Fig. 3.  Comparison of HPM, HAM and OHAM of Eq. 

(3.2.1) for 1   

5. CONCLUSION 
In this paper, we have proved that OHAM is simpler, can 

easily to control the convergence and has less computational 

work. Therefore, OHAM is valid and great potential for the 

solution of BVPs.  
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