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ABSTRACT: In this paper we have applied Optimal Homotopy Asymptotic Method (OHAM) to two
models of Boundary Value Problems (BVPSs). The results obtained by OHAM are compared with the exact
solution. The obtained solutions show that OHAM is effective, simpler easier and explicit.
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1. INTRODUCTION

In engineering and applied sciences most of the problems are
nonlinear in nature. Some of the analytic methods are given
in the literature. The researchers then searched new methods
like Adomian Decomposition Method (ADM) [1],
Variational Iterative Method (VIM) [2] , Differential
Transform Method (DTM) [3], Group Analysis Method [4],
Homotopy Perturbation Method (HPM) [5], Radial Basis
Function [6], and These methods are treated for weakly
nonlinear problems and limited for strongly nonlinear
problems. The perturbation methods were introduced for
strongly nonlinear BVPs [7-9]. A small parameter is
involved in these methods and is difficult to find. For this
purpose Artificial Parameters Method [10], Homotopy
Analysis Method (HAM) [11] and Homotopy Perturbation
Method (HPM) [5] have been introduced. These methods
combined the homotopy with the perturbation techniques.
Recently, Vasile Marinca et al introduced OHAM for
nonlinear BVPs. This method does not require small
parameter to be assumed [12-16].

The applicability of these methods is studied in [17-24]. The
motivation of this paper is to apply OHAM for the solution
of nonlinear BVPs arising in heat transfer.

In section 2, the basic idea of OHAM is formulated [12-16].
In Section 3, the effectiveness of the OHAM formulation for
BVPs arising in heat transfer has been studied. Three special
cases of nonlinear boundary value problems have been
analyzed [25-26].

2. Fundamental Mathematical Structure of OHAM

We consider a general nonlinear problem:

£(s(z))+k(z)+n(s(2))=0, 2.1)
with
@(g,(;—gj =0. 2.2)

where L is the linear operator, g(Z)unknown function,

k(Z) known function, W(g(z)) nonlinear operator and

@B a boundary operator.
According to OHAM, we can take

Qx[0,1] — R satisfying

r(z,5):

(l—s)[L(r(z, s))+ k(z)} =
F(s)[ £(z(z.9))+ T (2)+ v (r(2.9)) ],

(2.3)
@[T(Z,S),@):Q (2.4)
where S 6[0,1] is embedding parameter,

T(Z, S) unknown function, F (S) # 0 auxiliary function.
Also
s=0=17(z,0)=¢,(1),

(2.5)
s=1=17(z,1)=¢(z), (2.6)
From Eq. (2.1) and (2.2) we have

_ ds ) _
L(g,(2))+k(2)=0, 3|, " =0. 2.7)
Choosing
F(s)=5sB,+sB, +5°B, +... (2.8)

Where B, B,, B;,...are optimal constants to determine.
Expanding Z'(Z, S, Bi) by Taylor’s series in the form,

o0

7(2,5,B))=6,(2)+ > g (z,B)s*, i=12,.
k=1
(2.9
Substituting Eq. (2.9) into Eq. (2.1) and Eg. (2.2) and
equating the coefficient of same powers of S, we get
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E(gl(z)):Blwo (go(z)): (B(Q,EJZO ,

L£(5,(2)) - £(c:(2))=B, N, (5, (2)) +

B[ £(6(2)+ M (5D.6(2)], @[gz,d—fj:o,

L(gk (Z))_L(gk—l(z)): B, Vo (go(z))"'

3 B, |:£(gk—i (Z))+Wk—i (go(z)’gl(z)""’gk—i(z))]’

i=1
dg,
Bl¢,— |=0,k=2,3,...,
(gk dz j
2.12)

N (go(z)1gl(z)1""gk—i (Z))is the
coefficient of ¥~ in the expansion.
N(7(2,5.B))) =, (c0(2)) +
> N (Gor 61y Gy ) S 1=123,.

k>1

In Egq. (2.12)

(2.13)

It is to be noted that U, , K >0 gives a linear BVP which

can be easily solved.
The convergence of the series (2.9) depends upon the

auxiliary constants B, B, .... For s =1

&(2,B)=6,(2)+D 6 (2. B). (2.14)
k>1

Putting Eq. (2.14) into Eq. (2.1), we obatin

R(z,B/)=L(¢(z,B))+k(z) + N (5(z,B)). (2.15)

If R(Z, B, ) =0 then 5(2, Bi) gives the exact solution of
the problem which does not happen in case of nonlinear
problems.

For the computation of C,, different methods like

Galerkin’s Method, Ritz Method, Least Squares Method and
Collocation Method are used. By the Method of Least

b
Squares | (Bi ) :I R? (Z, Bi)dz, (2.16)

where aand b are two constants.
The auxiliary constants B, ,i=1,2,...,mcan be found by
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- =—=,..=—=0. 2.17)
oB, 0B, 0B,
The M th order approximate solution is obtained by these
constants. The constants B, can also be found

R(k,B)=R(k,B)=..=R(k,,B)=0, i=12,...m.
(2.18)
The auxiliary function H ( p) is useful for convergence

and error minimization.
3. Application of OHAM to heat transfer problems
The application of OHAM is studied in the following
models.
Model 1 [25]
Consider a lumped system BVP of the form

(14 4E) S + &4 4" =0,

£(0)=1.

Zeroth Order Problem: & +&' =0, & (0)=1,
(3.1.2)

(3.1.1)

its solution is
SH=e".

First Order Problem:

& =(54-4)+C (504 +§0§o'), £(0)=0, (314)

whose solution is

(3.1.3)

&(z,B)= —Z?Ble‘z +Be™” —%e“‘z.
Second Order Problem:

& =G+ -&)rB(4581+ 88 + 568 )+ B
&(0)=0, (3.16)

(3.1.5)

we get the following solution

1
&(z,B,B,) =%(10512 —48B,)

—3—16(71312 +48B, +24B, Je”’

1 22
—5(38812 ~60B, —12B, Je”?

1 32
—£(22812—24Bl—2482)e 3

1 4
—£(76812—1281—1232)e )

(3.1.7)
+E675Z +§ Blzefﬁz +£ BlZef7Z
36 36 36
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From Egs. (3.1.3), (3.1.5), and (3.1.7), we obtain

‘f(z’Bl1Bz)Z§0+§1(Z’Bl)+éCz(Z,Bl,Bz)- (3.1.8)
£(2)=C,+Ce? +Ce?*+Ce™
+C,e " +Ce > +Ce " +Ce ",
(3.1.9)
where
C, _i(loB2 48B, )
36
1
C, = £(715 +48B, +488,),
1
C,= g(sss +12B, +24B,),
1
C, = g(225 +24B +24Bl),
1
C,= 36(768 +12B, +24B,),
13 _,
C.=—-B2,
5 36 1
32 8
C.=—B?C,=—Bj.
° 3 ' 36 "
(3.1.10)

Using Eq. (3.1.9) in (3.1.1) and applying the method of least
square, we obtain

C, =-0.6432739673843123 and
C,=0.3131576613661234 .

Substituting these values in Eq. (3.1.9) for 5, =1= f3,, we
obtain

¢ ( Z) =1.2045e % +0.264785e **

~1.261115e"* —1.02716e™*

—0.591555¢°* —0.01e ®* +0.0870e "*.  (3.1.11)
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Fig. 1. Comparison of HPM, HAM and OHAM of Eq.
(823)for B =1=p4,.
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Model 2 [25]

By assuming /3

=0,5,=41

d&
AET =0,
dz @ TerAe (3.2.1)

£(0)=1.
Zeroth Order Problem: & +& =0, & (0) =1,

3.2.2)
its solution is

50 =e”’

in Eg. (3.1.1), we obtain

(3.2.3)

First Order Problem:

& =BE +(&-&)+B (4 +44")+&),

&(0)= (3.2.4)
whose solution is
&(z2,B)= %(e‘Z —e“‘z). (3.2.5)
Second Order Problem:
=(1+B)& +(&-&)+B& (1+444°)
B, (50 ve! +/1§04) . 5(0)=0, (326)

its solution is

2 2
&(2,B,B,)= B B,2B B 2B 5w
3 3 9 3 9

2
JB_E —L +2B%1+3B, Ae-Z—ng e,
3 3 9

(3.2.7)
From Egs. (3.2.3), (3.2.5), and (3.2.7), we obtain:

£(z,B,B,)=&+&(2,B)+&(2.B,B,). (328)
Using Eq. (3.2.8) in (3.2.1) and applying the technique as
discussed in Egs. (2.15)- (2.17), we obtain

C, =-0.610505203261472 and

C,= —0.017505005737890128 .
Substituting these values in Eg. (3.2.8), we have

£(2)=(1-(0.149257492) A)e™* +0.025881176 2>

+0.2788039611e ** +0.155463297 1e "

4. RESULTS AND DISCUSSIONS

In section 2, OHAM formulation is given and applied to two
models of BVPs. For most of the computation, we have used
Mathematica 7. Fig. 1 shows that OHAM and HAM
solutions are similar and Fig. 2 shows that OHAM is same to
NHPM solutions for various values of A and Fig.3 shows
that OHAM and HPM solutions are nearly alike [25].

(3.2.9)
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Fig. 2. Plot of §(z)for different values of A
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Fig. 3. Comparison of HPM, HAM and OHAM of Eq.

(3.2.1)fora =1

5. CONCLUSION

In this paper, we have proved that OHAM is simpler, can
easily to control the convergence and has less computational
work. Therefore, OHAM s valid and great potential for the
solution of BVPs.
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